

University of Idaho 2024 – 2025 Faculty Senate Agenda

<u>Meeting #21</u> Tuesday, February 4, 2025, at 3:30 pm Zoom Only

- I. Call to Order
- II. Approval of Minutes (Vote)
 - Minutes of the 2024-2025 Faculty Senate Meeting #20 (January 28, 2025) Attach. #1
- III. Chair's Report
 - Who We Are: Stefan Tohaneanu, Associate Professor of Mathematics/Senate from COS
- IV. Provost's Report
- V. Committee Reports
 - University Curriculum Committee (Vote)
 - UCC 180 Mechanical Engineering (BSME) -- Eric Wolbrecht, Department Chair and Professor, Mechanical Engineering (Vote) Attach. #2
 - UCC 558: Foundations of Business Management Graduate Academic Certificate Mya Groza, Associate Dean and Associate Professor – College of Business and Economics (Vote) Attach. #3

 UCC 240: Geology MS -- Eric Mittelstaedt, Associate Professor and Alistair Smith, Department Chair and Professor - Department of Earth and Spatial Sciences (Vote) Attach. #4

- University Budget and Finance Committee Update Mya Groza, Associate Dean and Associate Professor College of Business and Economics; Chair of UBFC
- VI. Other Announcements and Communications
 - Fundraising Update Jen Root, VP for Development University of Idaho Foundation and Ben McLuen, CEO University of Idaho Foundation
 - Discussion on increasing bureaucratic and compliance tasks and their impact on productivity Kristin Haltinner, Senate Chair
- VII. New Business
- VIII. Adjournment

Attachments

- Attach. #1 Minutes of the 2024-2025 Faculty Senate Meeting #20 (January 28, 2025)
- Attach. #2 UCC 180: Mechanical Engineering BSME

- Attach. #3 UCC 558: Foundations of Business Management Graduate Certificate
- Attach. #4 UCC 240: Geology MS

2024 – 2025 Faculty Senate – <u>Pending Approval</u> <u>Meeting # 20</u> Tuesday, January 28, 2025, 3:30 pm – 5:00 pm Zoom only

Present: Aus, Barannyk, Borrelli, Chapman, Corry, Hagen, Haltinner, Hu, Kenyon, Kirchmeier, Torrey Lawrence (w/o vote), Maas, McKenna, Miller, Murphy (vice chair), Pimentel, Ramirez, Remy, Rinker, Roe, Sammarruca (w/o vote), Shook, Strickland, Thorne, Tohaneanu **Absent:** Raney (excused), Kirchmeier (excused), Sowisdral

Call to Order: Chair Haltinner called the meeting to order at 3:30 pm.

Approval of Minutes (vote):

The minutes of the 2024-25 Meeting #19, January 21, 2025, were approved as distributed.

Chair's Report

- All instructors should have received an email about early warning grades, due February 11. Early warning grades have been returned to Banner, like midterm and final grades, to accommodate faculty feedback. Thank you to Dean Kahler and Brenda White for incorporating faculty feedback.
- Last Fall, Faculty Senate passed a resolution in support of keeping the old class schedule, which has important features that the new tool does not. The University Advising Committee created a list of those items. Representatives from UAC, Faculty Senate and the Registrar's office are working with Ellucian on these recommendations.
- The "Black Excellence Gala" is this Friday in the International Ballroom. It's a great way to support Black students who are newly organizing this event after the closure of the Black and African American cultural center. https://www.idahobca.com/gala
- Public school calendar. There is interest in considering an earlier start, but the main concern is the August heat and the absence of AC in the schools.
- Excellence Award nominations are due February 7. Be sure to nominate a colleague!
- To come: conversations about increasing bureaucratic and compliance burden on faculty, and about safety and support for international students and faculty on campus.
- <u>Who we are</u>: Robert Rinker, Senator from COE Bob has been at the U of I 46 years, possibly longer than anyone else at the university. He shared some background on his education and career highlights. Bob obtained a permanent instructor position in 1977 and was the Computer Science Department Head in 1981. Between 1989 and 1995, Bob was the director of the engineering program in Boise and returned to U of I in 2000. Bob loves working with students on special fun projects, of which he showed a few examples. One of them is Tower Light, at the Theophilus Tower around 2012. A group of graduate students got together and came up with the idea of doing animations using lights in the windows of the of the tower. The project was named "Housing by Day, Light Show by Night," and was used for homecoming and Vandal Fridays. Another project involved creating LED glasses, worn by the marching band during the Holiday Concert.

Provost's Report

- February Moscow <u>Faculty Gathering</u>, hosted by the College of Business and Economics, to be held on Wednesday February 12, 2025, from 4:30-6:30 PM PT in the Albertson Building Atrium. Please complete this <u>RSVP form</u> if you plan to attend.
- <u>Fidelity has great financial planning tools. Visit: Appointment Scheduler</u>

- Legislative week. Yesterday, President Green spoke before the Joint Finance-Appropriations Committee (JFAC) at the Higher Ed hearings that are happening this week. There were many questions about budgets, DEI, and what the University is doing in general. President Green spoke again today before one of the Education Committees, and another presentation is scheduled for tomorrow. On Friday, JFAC is planning to do budget setting for the hearings they heard this week.
- The Trump administration issued several <u>executive orders to halt federal grant spending</u>. The University of Idaho is talking with our government relation people and our partners in this, such as APLU and ACE, and of course with our delegations. At this time, the best thing is to hold the course and continue what you're doing. We'll adjust accordingly if and when we have to.

Discussion:

There was some discussion on the serious impact of these orders on international students and research. A senator asked whether there is a university policy about how to respond if Immigration and Customs Enforcement (ICE) agents show up on campus and ask people for their ID. The provost replied that we will follow all the laws that apply to our students and this situation, including FERPA.

Committee Reports

Update and requested guidance from Ubuntu – Caitlin Cieslik-Miskimen, Chair of Ubuntu. The committee's recent work has focused on ways to create a more productive work and intellectual environment for our students. The first initiative concerns the annual Martin Luther King (MLK) Art and Writing contest, which will be launched soon with a deadline sometime in February. Typically, contestants are asked to respond to a quote or something associated with Martin Luther King Jr's legacy. Ubuntu is also working on some student support and knowledge initiatives. One is to help students connect with the materials or resources they need to change their names, such as how to change a student's preferred name in Canvas, creating an infographic that can be easily shared with advisors, students, and faculty. Last year, they tried to advance an initiative to allow preferred names on diplomas but ran into some issues with the legal status of those documents. They are still looking into ways to allow students some sort of material at their commencement to reflect their preferred name. Another priority this year has been to make students more aware of the available funds to test student eligibility for disability accommodation. The committee has identified a gap where students could benefit from some of the resources provided by CDAR, but CDAR does not have the funds to cover the necessary testing. They are working with CDAR to get language on their website about funds to cover testing and other ways to connect students with other resources that can help them cover the costs. They are also considering a resolution thanking the staff from the DEI offices for their commitment and the hard work that they've done on this campus, as well as something that can underscore our commitment to the principles that they have advanced. So, we are hoping to bring that before Faculty Senate at a later date for a vote. Contact: caitlinc@uidaho.edu Discussion:

In response to a request for clarification, Caitlin explained that some of the services offered by CDAR need testing to assess a student eligibility for some of those services. The committee's initiative is to help the student cover the cost of those tests, which may be provided by another medical professional. It is also important to let students know that cost isn't provided by their health insurance plan through the university, and where they can find providers who can help them get the paperwork they need. Faculty and advisors should direct students to CDAR, where they will be guided through the next steps. There is no perfect solution yet, but the committee is trying to ease the financial burden by at least making students aware of the available resources.

A brief discussion followed on gender identity and preferred names. The conversation about diplomas continues.

Announcements and Communications:

- Brainstorming session on the university's relationship with the legislature/perception of higher education in Idaho Kristin Haltinner
 - Theme of this session (included in the binder):

How do we help Idaho see the important work that we do? How should we share our success in preparing students for the workforce? How do we best share our efforts to help students see and embrace a wide variety of frameworks and perspectives?

Takeaways from groups in breakout rooms:

- Take a broad, historical approach. Stand together as an institution that's 100 years old. Our response to criticisms from the legislators should be a global one, focusing on our land-grant mission and who we are, collectively. "We are Idaho"
- Enlist the help of students about their experiences in modern classrooms. Reach out to other institutions in the state.
- Some senators are discouraged and perceive struggle with the legislators to be futile.
- Branding and marketing. Emphasize the economic impact of the university in the state. Use the language of legislators and community members but also fun technology like sizzle reels.
- o Emphasize the long tradition of valuing education for education's sake.
- We need to understand their background and where their views and perceptions originate from.
- Alumni can be a great asset to engage with the legislature. Invite them to campus and help them with their agenda, if they have one.
- Engage people who receive honorary degrees, both at the state and national levels.
- People other than faculty and students should approach the legislators. First, we need to speak to the right people at SBOE.
- Let the public know what we do.

Provost Lawrence praised the many great ideas. He added that students are already engaged with the legislators. A group is presently in Boise. There is an opportunity to engage with SBOE when they come to campus in April.

New Business: None

Adjournment:

The meeting was adjourned at 5:01pm.

Respectfully Submitted,

Francesca Sammarruca Secretary of the University Faculty & Secretary to Faculty Senate

180: MECHANICAL ENGINEERING (BSME)

In Workflow

- 1. 130 Chair (ewolbrec@uidaho.edu)
- 2. 08 Curriculum Committee Chair (gabrielp@uidaho.edu)
- 3. Degree Map Review (rfrost@uidaho.edu; sandeschlueter@uidaho.edu)
- 4. Registrar's Office (none)
- 5. Ready for UCC (none)
- 6. UCC (none)
- 7. Post-UCC Registrar (none)
- 8. Faculty Senate Chair (stoutm@uidaho.edu; cari@uidaho.edu; nvietz@uidaho.edu; sandeschlueter@uidaho.edu)
- 9. Provost Q 2 (stoutm@uidaho.edu; gwen@uidaho.edu; sandeschlueter@uidaho.edu)
- 10. State Approval (stoutm@uidaho.edu; gwen@uidaho.edu; sandeschlueter@uidaho.edu)
- 11. NWCCU (stoutm@uidaho.edu; sandeschlueter@uidaho.edu; gwen@uidaho.edu)
- 12. Catalog Update (sbeal@uidaho.edu)

Approval Path

- 1. Fri, 23 Aug 2024 23:53:32 GMT Eric Wolbrecht (ewolbrec): Approved for 130 Chair
- Tue, 17 Sep 2024 16:46:02 GMT Gabriel Potirniche (gabrielp): Approved for 08 Curriculum Committee Chair
- 3. Tue, 01 Oct 2024 23:33:02 GMT Theodore Unzicker (tunzicker): Rollback to 130 Chair for Degree Map Review
- Thu, 03 Oct 2024 23:01:18 GMT Eric Wolbrecht (ewolbrec): Approved for 130 Chair
- 5. Thu, 03 Oct 2024 23:09:15 GMT Gabriel Potirniche (gabrielp): Approved for 08 Curriculum Committee Chair
- Mon, 21 Oct 2024 18:51:31 GMT Rebecca Frost (rfrost): Approved for Degree Map Review
- Tue, 22 Oct 2024 22:37:22 GMT Theodore Unzicker (tunzicker): Approved for Registrar's Office
- 8. Tue, 22 Oct 2024 22:50:34 GMT Sydney Beal-Coles (sbeal): Approved for Ready for UCC
- 9. Tue, 29 Oct 2024 17:50:04 GMT Sydney Beal-Coles (sbeal): Approved for UCC
- 10. Tue, 21 Jan 2025 18:53:09 GMT Sydney Beal-Coles (sbeal): Approved for Post-UCC Registrar

History

- 1. Mar 23, 2022 by Vibhav Durgesh (vdurgesh)
- 2. Mar 4, 2024 by Vibhav Durgesh (vdurgesh)

Date Submitted: Wed, 21 Aug 2024 21:47:34 GMT

Viewing: 180 : Mechanical Engineering (BSME) Last approved: Mon, 04 Mar 2024 22:04:02 GMT

Last edit: Mon, 16 Dec 2024 17:17:53 GMT

Changes proposed by: Vibhav Durgesh

Faculty Contact

Faculty Name

Eric Wolbrecht

Faculty Email

ewolbrec@uidaho.edu

Change Type (Choose all that apply)

Change curriculum requirements

Description of Change

We are making the following changes to the BSME requirements:

- Remove ME 341 from required courses, Fall Term 3 in the 4-yr plan; the course will exist as a TE at the 400 level after some modification

- Remove ME 435 from required courses, Fall Term 4 in the 4-yr plan; the course will exist as a TE

- Add 2 Technical Electives to replace ME 341 and ME 435

- Reorganization of Technical Electives into 3 groups (ME, STEM, and General)

- Remove ME 307 and ME 308 from TE options for clarity; ME 407 is being updated to allow a maximum of 3 credits, taking one credit at a time. We previously had students take ME 307 (1 cr), ME 308 (1 cr), and ME 408 (1 cr) to accumulate 3 TE credits, but we believe this new approach aligns with preferences of the registrar and is more consistent with our similar courses (e.g., UG research and Engineering Team projects) that have maximum for-credit limits.

- Remove ECON 272 as an option and keeping ECON 201 and ECON 202 as options

- Add PHIL 208 as an alternative option to PHIL 103 (so students can take either); discussed with PHIL chair who approved idea - easier degree progress

- Modify language regarding certification and graduation requirements for clarity

- Adding undergraduate research TE for up to 6 credits - more open-ended, hands-on, project-based experience for our students. The value of undergraduate research is well-established in the literature and supported by our Industrial Advisory board.

- Adding a 3-course sequence TE options for machine shop training - more hands-on training - and learning how to design based on how things are made.

Will this request have a fiscal impact of \$250K or greater?

No

Academic Level

Undergraduate

College

Engineering

Department/Unit:

Mechanical Engineering

Effective Catalog Year

2025-2026

Program Title

Mechanical Engineering (BSME)

Program Credits

128

CIP Code

14.1901 - Mechanical Engineering.

Curriculum:

This program is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.

Required course work includes the university requirements (see regulation J-3 (https://catalog.uidaho.edu/general-requirementsacademic-procedures/j-general-requirements-baccalaureate-degrees/)), completion of the Fundamentals of Engineering (FE) examination, and:

Code	Title	Hours
CHEM 1111	General Chemistry I	3
CHEM 1111L	General Chemistry I Laboratory	1
COMM 1101	Fundamentals of Oral Communication	3
ENGR 1230	First Year Engineering	2
ENGR 2100	Engineering Statics	3
ENGR 2120	Python Programming Essentials	3
ENGR 2150	Elements of Materials Science	3
ENGR 2200	Engineering Dynamics	3
ENGR 2400	Introduction to Electrical Circuits	3
ENGR 3350	Engineering Fluid Mechanics	3
ENGR 3500	Engineering Mechanics of Materials	3
MATH 1170	Calculus I	4
MATH 1750	Calculus II	4
MATH 2750	Calculus III	3
MATH 3100	Ordinary Differential Equations	3
MATH 3300	Linear Algebra	3

ME 2230	Mechanical Design Analysis	3
ME 2900	Computer Aided Design Methods	3
ME 3130	Dynamic Modeling of Engineering Systems	3
ME 3220	Mechanical Engineering Thermodynamics	3
ME 3250	Course ME 3250 Not Found	3
ME 3300	Experimental Methods for Engineers	3
ME 3450	Heat Transfer	3
ME 4160	FE Exam Review	1
ME 4240	Mechanical Systems Design I	3
ME 4260	Mechanical Systems Design I	3
ME 4300	Senior Lab	3
PHYS 2110	Engineering Physics I	3
PHYS 2110L	Laboratory Physics I	1
PHYS 2120	Engineering Physics II	3
PHYS 2120L	Laboratory Physics II	1
Select one of the following:		3
PHIL 1103	Introduction to Ethics	5
PHIL 2080	Business Ethics	
Select one from the following:	DUSITIESS ETTICS	2
		3
ECON 2201	Principles of Macroeconomics	
ECON 2202	Principles of Microeconomics	01
Technical Elective Requirements		21
Electives; and General Elective		
Mechanical Electives (select 6-18 d		
ME 3410	Intermediate Mechanics of Materials	
ME 4040	Special Topics	
ME 4100	Principles of Lean Manufacturing	
ME 4120	Gas Dynamics	
ME 413	Engineering Acoustics	
ME 4140	HVAC Systems	
ME 4150	Materials Selection and Design	
ME 4170	Turbomachinery	
ME 4200	Fluid Dynamics	
ME 4210	Advanced Computer Aided Design	
ME 4330	Combustion Engine Systems	
ME 4350	Thermal Energy Systems Design	
ME 4360	Sustainable Energy Sources and Systems	
ME 4380	Sustainability and Green Design	
ME 4400	Introduction to Aerodynamics	
ME 4420	Introduction to Aircraft Materials	
ME 4430	Introduction to Aircraft Design	
ME 4500	Fundamentals of Computational Fluid Dynamics	
ME 4510	Experimental Methods in Fluid Dynamics	
ME 4540	Assistive Technologies for Physical Impairment	
ME 4550	Biomechanics: Genome to Phenome	
ME 4580	Finite Element Applications in Engineering	
ME 459	Robotic Systems Engineering I	
ME 4610	Fatigue and Fracture Mechanics	
ME 4640	Robotics Kinematic and Kinetic Analysis	
ME 4660	Compliant Mechanism Design	
ME 4720	Mechanical Vibrations	
ME 4800	Python Programming for Engineers	
ME 4800 ME 4810	Control Systems	
ME 4900	Solid Modeling, Simulation and Manufacturing Capstone	
ME 4950	Mechanics in Design and Manufacturing	
ME 4990	Directed Study	

ME 513	Engineering Acoustics
ME 5140	HVAC Systems
ME 5170	Turbomachinery
ME 5190	Fluid Transients
ME 5200	Fluid Dynamics
ME 5240	Sustainable Food-Energy-Water Systems
ME 5250	Advanced Heat Transfer
ME 5270	Thermodynamics
ME 5290	Combustion and Aeropropulsion
ME 5380	Sustainability and Green Design
ME 5390	Advanced Mechanics of Materials
ME 5400	Continuum Mechanics
ME 5410	Mechanical Engineering Analysis
ME 5430	Introduction to Aircraft Design
ME 5440	Conduction Heat Transfer
ME 5460	Convective Heat Transfer
ME 5470	Thermal Radiation Processes
ME 5490	Finite Element Analysis
ME 5500	Advanced Computational Fluid Dynamics
ME 5510	Experimental Methods in Fluid Dynamics
ME 554	Assistive Technologies for Physical Impairment
ME 5550	Biomechanics: Genome to Phenome
ME 5580	Finite Element Applications in Engineering
ME 559	Robotic Systems Engineering I
ME 5640	Robotic Dynamics, Simulation, and Control
ME 5660	Compliant Mechanism Design
ME 5690	Heat Exchanger Design
ME 5710	Building Performance Simulation for Integrated Design
ME 5800	Linear System Theory
ME 5830	Reliability of Engineering Systems
STEM Electives (Select 3-9 credits	from the following; at least 3 credits must be from a listed Math, Physics, or Statistics course):
BE 4210	Image Processing and Computer Vision
BE 4620	Electric Power and Controls
BE 441	Instrumentation and Controls
CS 4701	Artificial Intelligence
CS 4715	Deep Learning
CS 4731	Evolutionary Computation
CS 475	Machine Learning (Machine Learning)
CS 4771	Python for Machine Learning
CS 488	Applied Data Science with Python (Applied Data Science with Python)
CS 4885	Machine Vision
ENGR 3600	Engineering Economy
ENGR 4280	Numerical Methods
ENGR 4660	PLC Programming for Automation
ENGR 5660	PLC Programming for Automation
MATH 3710	Mathematical Physics
MATH 4200	Complex Variables
MATH 4280	Numerical Methods
MATH 4320	Numerical Linear Algebra
MATH 4370	Mathematical Biology
MATH 4510	Probability Theory
MATH 4520	Mathematical Statistics
MATH 4530	Stochastic Models
MATH 4710	Introduction to Analysis I
MATH 4720	Introduction to Analysis II
MATH 4800	Partial Differential Equations
NE 438	Fundamentals of Nuclear Materials

	ME 401 ME 4020	Engineering Team Projects Course ME 4020 Not Found (Undergraduate Research)	
	OM 4560	Enterprise Quality Management	
	OM 4390	Systems and Simulation	
	OM 3780	Project Management	
	ENTR 4150	New Venture Creation	
	ENTR 4140	Entrepreneurship	
G	eneral Electives (Select 0-6 credit		
~		course in another engineering discipline	
	STAT 4310	Statistical Analysis	
	STAT 3010	Probability and Statistics	
	PHYS 4840	Astrophysics of Stars and Planets	
	PHYS 4650	Nuclear and Particle Physics	
	PHYS 4640	Solid State Physics	
	PHYS 4430	Optics	
	PHYS 4280	Numerical Methods	
	PHYS 4110	Advanced Physics Lab	
	PHYS 3510	Introductory Quantum Mechanics I	
	PHYS 3050	Modern Physics	
	NE 5300	Two-Phase Flow	
	NE 4500	Principles of Nuclear Engineering	

lotal Hours

1 A maximum of 3 credits of ME 4010 may be applied toward degree requirements. A maximum of 6 credits of ME 4020 may be applied toward degree requirements. A maximum of 3 credits of ME 4070 may be applied toward degree requirements.

Courses to total at least 128 for this degree, not counting Math below 1170 and English below 1102.

To advance to upper-division mechanical engineering courses, a student majoring in mechanical engineering must earn certification: the student must complete all courses listed below while accumulating at most three grades of D or F in the listed mathematics, science, or engineering courses. This number includes courses transferred from other institutions and multiple repeats of a single course.

In addition, students must earn at least five grades of B or better in the same mathematics, science, or engineering courses. A P (Pass) grade in these courses is considered a C in satisfying this certification requirement.

Code	Title	Hours
CHEM 1111	General Chemistry I	3
COMM 1101	Fundamentals of Oral Communication	3
ENGL 1102	Writing and Rhetoric II	3
ENGR 1230	First Year Engineering	2
ENGR 2100	Engineering Statics	3
ENGR 2150	Elements of Materials Science	3
ENGR 2200	Engineering Dynamics	3
ENGR 2400	Introduction to Electrical Circuits	3
ENGR 3500	Engineering Mechanics of Materials	3
ENGR 2120	Python Programming Essentials	3
MATH 1170	Calculus I	4
MATH 1750	Calculus II	4
MATH 2750	Calculus III	3
MATH 3100	Ordinary Differential Equations	3
MATH 3300	Linear Algebra	3
ME 2230	Mechanical Design Analysis	3
ME 2900	Computer Aided Design Methods	3

PHYS 2110	Engineering Physics I	3
PHYS 2120	Engineering Physics II	3

To graduate in this program, a student may accumulate at most five grades of D or F in the mathematics, science, or engineering courses listed in the degree requirements. This number includes courses transferred from other institutions and multiple repeats of a single course.

Degree Maps: Four-Year Plan

Fall Term 1		Hours
ENGL 1102	Writing and Rhetoric II	3
MATH 1170	Calculus I	4
ENGR 1230	First Year Engineering	2
CHEM 1111	General Chemistry I	3
CHEM 1111L	General Chemistry I Laboratory	1
COMM 1101	Fundamentals of Oral Communication	3
	Hours	16
Spring Term 1		
MATH 1750	Calculus II	4
PHYS 2110	Engineering Physics I	3
PHYS 2110L	Laboratory Physics I	1
ENGR 2100	Engineering Statics	3
ENGR 2120	Python Programming Essentials	3
PHIL 1103	Introduction to Ethics	3
or PHIL 2080	or Business Ethics	
	Hours	17
Fall Term 2		
MATH 3100	Ordinary Differential Equations	3
ENGR 2150	Elements of Materials Science	3
ME 2900	Computer Aided Design Methods	3
PHYS 2120	Engineering Physics II	3
PHYS 2120L	Laboratory Physics II	1
ENGR 3500	Engineering Mechanics of Materials	3
	Hours	16
Spring Term 2		
MATH 2750	Calculus III	3
ME 2230	Mechanical Design Analysis	3
ENGR 2200	Engineering Dynamics	3
ENGR 2400	Introduction to Electrical Circuits	3
MATH 3300	Linear Algebra	3
	Hours	15
Fall Term 3		
ME 3220	Mechanical Engineering Thermodynamics	3
ENGR 3350	Engineering Fluid Mechanics	3
ME 3130	Dynamic Modeling of Engineering Systems	3
ME, STEM, or General Technical Elective		3
STAT/PHYS/MATH Technical Elective		3
	Hours	15
Spring Term 3		
ME 3250	Course ME 3250 Not Found	3
ME 3450	Heat Transfer	3
ME 3300	Experimental Methods for Engineers	3
ME, STEM, or General Technical Elective		3
ECON 2201 or ECON 2202		3
	Hours	15
Fall Term 4		
ME 4240	Mechanical Systems Design I	3
ME 4300	Senior Lab	3
ME 4160	FE Exam Review	1
ME or STEM Technical Elective		3
Social and Behavioral Ways of Knowing		3
American Diversity Course		3
	Hours	16
Spring Term 4		
ME 4260	Mechanical Systems Design II	3
ME or STEM Technical Elective		3
ME Technical Elective		3
		5

128

ME Technical Elective Humanistic and Artistic Ways of Knowing International Course

Hours

Total Hours

Five-Year Plan

Fall Term 1		Hours
ENGL 1101	Writing and Rhetoric I Precalculus I: Algebra	3
MATH 1143 MATH 1144		3
ENGR 1230	Precalculus II: Trigonometry First Year Engineering	2
COMM 1101	First Year Engineering Fundamentals of Oral Communication	3
	Hours	12
Spring Term 1	10013	12
ENGL 1102	Writing and Rhetoric II	3
MATH 1170	Calculus I	4
CHEM 1111	General Chemistry I	3
CHEM 1111L	General Chemistry I Laboratory	1
PHIL 1103	Introduction to Ethics	3
or PHIL 2080	or Business Ethics	
	Hours	14
Fall Term 2		
MATH 1750	Calculus II	4
PHYS 2110	Engineering Physics I	3
PHYS 2110L	Laboratory Physics I	1
ENGR 2100	Engineering Statics	3
ENGR 2120	Python Programming Essentials	3
Spring Term 2	Hours	14
MATH 2750	Calculus III	3
ENGR 2150	Elements of Materials Science	3
ENGR 2200	Engineering Dynamics	3
ENGR 2400	Introduction to Electrical Circuits	3
	Hours	12
Fall Term 3		
MATH 3100	Ordinary Differential Equations	3
ME 2900	Computer Aided Design Methods	3
PHYS 2120	Engineering Physics II	3
PHYS 2120L	Laboratory Physics II	1
ENGR 3500	Engineering Mechanics of Materials	3
	Hours	13
Spring Term 3		
MATH 3300	Linear Algebra	3
ME 2230	Mechanical Design Analysis	3
ME 3220	Mechanical Engineering Thermodynamics	3
ECON 201 OR ECON 202	Hours	3 12
Fall Term 4	nours	12
ENGR 3350	Engineering Fluid Mechanics	3
ME 3130	Dynamic Modeling of Engineering Systems	3
ME, STEM, of General Technical Elective	,	3
STAT/PHYS/MATH Technical Elective		3
	Hours	12
Spring Term 4		
ME 3250	Course ME 3250 Not Found	3
ME 3450	Heat Transfer	3
ME 3300	Experimental Methods for Engineers	3
ME, STEM, or General Technical Elective		3
International Course		3
Fall Term 5	Hours	15
ME 4240	Mechanical Systems Design I	3
ME 4300	Senior Lab	3
ME 4160	FE Exam Review	1
ME or STEM Technical Elective		3
Social and Behavioral Ways of Knowing		3

American Diversity Course		3
	Hours	16
Spring Term 5		
ME 4260	Mechanical Systems Design II	3
ME or STEM Technical Elective		3
ME Technical Elective		3
ME Technical Elective		3
Humanistic & Artistic Ways of Knowing		3
	Hours	15
	Total Hours	135

The degree map is a guide for completing your curricular requirements in a timely manner. Your academic advisor or department may be contacted for assistance in interpreting this map. This map does not reflect your academic history or transcript and is not an official notification of completion of degree or certificate requirements. Please contact your advisor regarding your official degree/ certificate completion status.

Distance Education Availability

To comply with the requirements of the Idaho State Board of Education (SBOE) and the Northwest Commission on Colleges and Universities (NWCCU) the University of Idaho must declare whether 50% or more of the curricular requirements of a program which may be completed via distance education.

Can 50% or more of the curricular requirements of this program be completed via distance education?

No

Geographical Area Availability

In which of the following geographical areas can this program be completed in person? Moscow

Student Learning Outcomes

Have learning outcomes changed?

No

Learning Objectives

- 1. Students will develop an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
- 2. Students will develop an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
- 3. Students will develop an ability to communicate effectively with a range of audiences.
- 4. Students will develop an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
- 5. Students will develop an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
- 6. Students will develop an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.
- 7. Students will develop an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.

A clearly stated rationale for this proposal must be included or the University Curriculum Committee will return the proposal for completion of this section. The rational should provide a detailed summary of the proposed change(s). In addition, include a statement in the rationale regarding how the department will manage the added workload, if any.

Several of the included changes are intended to reduce the required courses and replace them with technical electives. The ME faculty believes this will accomplish several things:

1) The field of mechanical engineering continues to evolve and broaden, and our industrial partners who hire our students are looking for students with varied expertise and knowledge. Our new approach allows students to have more choice in their areas of emphasis and express this on their transcripts/resumes through the courses they select as technical electives. Combined with our growing certificate offerings, our students will be able to distinguish themselves in the field of their choice by adding expertise in Aerospace Engineering (new cert), Robotics Engineering (proposed this cycle), and several others in the works. Our ME Advisory Board voted in favor of this approach at our meeting last spring.

2) the flexibility and specialization afforded to our students will be a great recruitment tool.

3) These changes have allowed us to increase the number of credits allowed in the "General" category, including Machine Shop Training, Engineering Team Projects, and Undergraduate Research. These add a hands-on, real-world aspect to our offerings, which is sought in industry. We also allow students to serve as Group Mentors for our lower-level hands-on project and software courses, which help them develop professional and teamwork skills. Our advisory board supports our mentoring program and its impact on our students' professional skills. Please note that Machine Shop Mentoring, Engineering Team Projects, Group Mentoring, and Undergraduate Research have limited capacity and as such most of our students select other options to complete their technical electives.

4) In the "General Category," we've introduced a new course, "Undergraduate Research," limited to 6 credits. As UI expands its research output and reputation, we need to improve our pathways to graduate school, especially given the increasingly difficult challenge of recruiting graduate students from outside our program. Our faculty believes that allowing students to participate in UG research for credit will have multiple benefits, including augmenting output capacity in our research labs and recruiting students to our GR program by letting them experience the excitement and opportunities of engineering research. And the students who don't end up in GR school will still greatly benefit from the open-ended nature of research, another skill sought by our industrial partners. Increasing student involvement in undergraduate research is also supported by our Advisory Board for student regardless of whether or not they attend graduate school.

Notes - Explanation of TE descriptions in the 4-year plan:

MATH/PHYS/STATS TE - to satisfy ABET Accreditation requirements, students must take a MATH or PHYS or STATS Technical Elective (and not Engineering). This 3 credit TE brings our MATH/PHYS/STATS total credits to 32, exceed the minimum 30 credits required by ABET.

ME, STEM, or General TE — This shows in 2 places, indicating the 0-6 credit option for the General TE category ME or STEM TE—This shows in 2 places, indicating the optional 6 credits in the 3-9 STEM TE category (3 must be MATH/PHYS/ STATS for ABET, as explained above).

ME TE - Students have to take at least 6 ME TE credits, but could take 18 ME TE credits if desired and avoid the STEM or General categories, except for the 3 credits required in the MATH/PHYS/STATS category.

Reviewer Comments

Theodore Unzicker (tunzicker) (Tue, 01 Oct 2024 23:33:02 GMT): Rollback: Per Gabriel's request.

Rebecca Frost (rfrost) (Mon, 21 Oct 2024 18:51:26 GMT): Added ENGR 1230 to 4-year map as ME 1230 was still listed. Added PHIL 2080 to Philosophy option. Broke out International and American Diversity courses in both maps. This was needed in the 4-year map to get to the 128 credit total, and is standard for a 5-year map.

Key: 180

1

558: FOUNDATIONS OF BUSINESS MANAGEMENT GRADUATE ACADEMIC CERTIFICATE

In Workflow

- 1. 079 Chair (myagroza@uidaho.edu)
- 2. 13 Curriculum Committee Chair (yunchung@uidaho.edu)
- 3. 13 Dean (dwoolley@uidaho.edu; lvictoravich@uidaho.edu)
- 4. Provost's Office (kudas@uidaho.edu; stoutm@uidaho.edu; jvalkovic@uidaho.edu; gwen@uidaho.edu; cari@uidaho.edu; brendah@uidaho.edu; sandeschlueter@uidaho.edu)
- 5. Degree Audit Review (rfrost@uidaho.edu; sandeschlueter@uidaho.edu)
- 6. Graduate Council Chair (mcmurtry@uidaho.edu; slthomas@uidaho.edu; sandeschlueter@uidaho.edu)
- 7. Registrar's Office (none)
- 8. Ready for UCC (none)
- 9. UCC (none)
- 10. Faculty Senate Chair (stoutm@uidaho.edu; cari@uidaho.edu; nvietz@uidaho.edu; sandeschlueter@uidaho.edu)
- 11. Provost's Office (kudas@uidaho.edu; stoutm@uidaho.edu; jvalkovic@uidaho.edu; gwen@uidaho.edu; cari@uidaho.edu; brendah@uidaho.edu; sandeschlueter@uidaho.edu)
- 12. State Approval (stoutm@uidaho.edu; gwen@uidaho.edu; sandeschlueter@uidaho.edu)
- 13. NWCCU (stoutm@uidaho.edu; sandeschlueter@uidaho.edu; gwen@uidaho.edu)
- 14. Degree Finder Review (degree-changes@uidaho.edu, omnif@uidaho.edu)
- 15. Catalog Update (sbeal@uidaho.edu)

Approval Path

- 1. Thu, 11 Apr 2024 20:23:10 GMT Mya Groza (myagroza): Approved for 079 Chair
- 2. Tue, 17 Sep 2024 23:46:18 GMT Eric Stuen (estuen): Approved for 13 Curriculum Committee Chair
- 3. Mon, 30 Sep 2024 04:08:51 GMT Lisa Victoravich (lvictoravich): Approved for 13 Dean
- Tue, 29 Oct 2024 16:13:58 GMT Sande Schlueter (sandeschlueter): Approved for Provost's Office
- 5. Thu, 31 Oct 2024 16:39:08 GMT Rebecca Frost (rfrost): Approved for Degree Audit Review
- 6. Fri, 06 Dec 2024 22:19:17 GMT Stephanie Thomas (slthomas): Approved for Graduate Council Chair
- Fri, 10 Jan 2025 18:37:36 GMT Theodore Unzicker (tunzicker): Approved for Registrar's Office
- 8. Fri, 10 Jan 2025 22:43:45 GMT Sydney Beal-Coles (sbeal): Approved for Ready for UCC
- 9. Tue, 28 Jan 2025 18:39:15 GMT Sydney Beal-Coles (sbeal): Approved for UCC

New Program Proposal

Date Submitted: Fri, 29 Mar 2024 20:47:14 GMT

Viewing: 558 : Foundations of Business Management Graduate Academic Certificate Last edit: Tue, 28 Jan 2025 18:35:46 GMT

Changes proposed by: Mya Groza

Faculty Contact

Faculty Name

Mya Groza

Faculty Email

myagroza@uidaho.edu

Will this request have a fiscal impact of \$250K or greater? No

Academic Level Graduate

College

Business & Economics

Department/Unit:

Business

Effective Catalog Year 2025-2026

Program Title Foundations of Business Management Graduate Academic Certificate

Degree Type

Certificate

Please note: Majors and Certificates over 30 credits need to have a state form approved before the program can be created in Curriculum.

Program Credits

12

CIP Code

52.0201 - Business Administration and Management, General.

Will the program be Self-Support?

No

Will the program have a Professional Fee?

No

Will the program have an Online Program Fee? Yes

Will this program lead to licensure in any state?

No

Will the program be a statewide responsibility? No

Financial Information

What is the financial impact of the request?

Less than \$250,000 per FY

Note: If financial impact is greater than \$250,000, you must complete a Program Proposal Form

Discribe the financial impact

The financial impact will be relatively minimal. All the courses in the certificate will already be taught, so no additional resources are required. We anticipate the certificate will make some of our classes more appealing because students can get a certificate. This will likely lead to a small but manageable increase in class sizes. Additionally, the presence of the certificate will have a small positive impact on recruitment by making a bite-sized version of the MBA more attractive, which will lead to a possible increase in enrollment and additional tuition revenue.

Curriculum:

The Foundations of Business Management Graduate Certificate offers a focused pathway for students to build essential management skills and establish a solid foundation in core business areas such as marketing, finance, leadership, and operations. Ideal for professionals seeking to strengthen their expertise, this certificate provides non-business graduate students with a comprehensive understanding of core management functions and serves as a gateway for those considering a full MBA program. Students gain a broad perspective on strategic decision-making and practical business principles, equipping them to make an immediate impact in their careers.

All required coursework must be completed with a grade of B or better (O-10-b (https://catalog.uidaho.edu/general-requirements-academic-procedures/o-miscellaneous/)).

Code	Title	Hours
Complete four of the fo	llowing courses:	12
MBA 5220	Strategic Marketing	
MBA 5240	Strategic Cost Management	
MBA 5250	Leading in Organizations	
MBA 5400	Supply Chain Strategies and Operations	
MBA 5140	Financial Management	
Total Hours		12

Courses to total 12 credits for this certificate

Distance Education Availability

To comply with the requirements of the Idaho State Board of Education (SBOE) and the Northwest Commission on Colleges and Universities (NWCCU) the University of Idaho must declare whether 50% or more of the curricular requirements of a program which may be completed via distance education.

Can 50% or more of the curricular requirements of this program be completed via distance education? Yes

If Yes, can 100% of the curricular requirements of this program be completed via distance education? Yes

Geographical Area Availability

In which of the following geographical areas can this program be completed in person? Online Only

Student Learning Outcomes

List the intended learning outcomes for program component. Use learner centered statements that indicate what will students know, be able to do, and value or appreciate as a result of completing the program.

Graduates will demonstrate cross-functional understanding in business processes and decisions.

Graduates will use appropriate tools of analysis to analyze and communicate business problems.

Describe the assessment process that will be used to evaluate how well students are achieving the intended learning outcomes of the program component.

Course assignments and relevant rubrics will be built into courses to assess learning outcomes that are a subcomponent of the MBA Program. Assignments are aligned with specific learning outcomes, and rubrics are developed to provide clear criteria for assessment. These assessments are distributed throughout the course, allowing for continuous evaluation of student progress. Instructors provide feedback based on the rubrics, and results are analyzed to identify areas for improvement. Through this process, the effectiveness of the curriculum and assessment methods is continuously refined to better support student learning.

How will you ensure that the assessment findings will be used to improve the program?

A structured approach will be adopted to ensure that assessment findings are utilized to improve the program and adhere to the U of I accreditation and our college accreditation (Association to Advance Collegiate Schools of Business (AACSB)). Firstly, the program director and faculty members will regularly review assessment data to identify trends, strengths, and areas for improvement. Assessment feedback will inform discussions during faculty meetings and program reviews, facilitating collaborative decisionmaking. Additionally, student feedback surveys will be conducted to gather insights into their learning experiences and perceptions of the program. Based on the combined analysis of assessment data and student feedback, targeted action plans will be developed to address identified areas for improvement, such as curriculum adjustments, instructional enhancements, or faculty development initiatives. Continuous monitoring and evaluation of these action plans will ensure that the program remains responsive to the evolving needs of students and effectively achieves its intended learning outcomes.

What direct and indirect measures will be used to assess student learning?

Direct measures of assessing student learning will include course assignments specifically designed to evaluate the attainment of learning outcomes. These assignments will be accompanied by rubrics outlining the criteria for evaluation. Additionally, exams and guizzes tailored to assess specific knowledge and skills will serve as direct measures. Indirect measures will involve student surveys and feedback mechanisms to gauge their perceptions of their learning experiences and overall satisfaction with the program. Furthermore, retention rates, graduation rates, and post-graduation success metrics such as job placement and career advancement will be used as indirect measures to assess the program's effectiveness in preparing students for their professional endeavors.

When will assessment activities occur and at what frequency?

Each learning outcome will be assessed at least twice every five years, ensuring a comprehensive evaluation of student achievement over time. This assessment frequency allows for a thorough understanding of the effectiveness of the MBA Program component in meeting its intended outcomes. An adaptive process for improvement will be implemented based on the findings from previous assessments, enabling targeted enhancements to the curriculum and instructional methods. Additionally, course-level outcomes will be assessed each time the course is run, providing immediate feedback for instructors to make adjustments and improvements as necessary. This approach ensures that assessment activities are both periodic and responsive, driving continuous improvement in student learning outcomes.

Student Learning Outcomes

Learning Objectives

Graduates will demonstrate cross-functional understanding in business processes and decisions.

Graduates will use appropriate tools of analysis to analyze and communicate business problems.

A clearly stated rationale for this proposal must be included or the University Curriculum Committee will return the proposal for completion of this section. The rational should provide a detailed summary of the proposed change(s). In addition, include a statement in the rationale regarding how the department will manage the added workload, if any.

This graduate certificate aims to create a smaller bite of our MBA program, a common practice across many business schools. Some adult learners do not want a full degree, and some want a less committed path to explore a long-term investment in a graduate degree.

Since it is a subset of the curriculum offered as a required MBA curriculum, there is minimal added workload of potential class size increases by providing the certificate.

Reviewer Comments

Sydney Beal-Coles (sbeal) (Fri, 02 Aug 2024 22:26:30 GMT): Program curriculum changed to four-digit course number per MISC proposal 118 (university-wide course number change)

Sande Schlueter (sandeschlueter) (Tue, 29 Oct 2024 16:10:49 GMT): Program Description: The Foundations of Business Management Graduate Certificate offers a focused pathway for students to build essential management skills and establish a solid foundation in core business areas such as marketing, finance, leadership, and operations. Ideal for professionals seeking to strengthen their expertise, this certificate provides non-business graduate students with a comprehensive understanding of core management functions and serves as a gateway for those considering a full MBA program. Students gain a broad perspective on strategic decision-making and practical business principles, equipping them to make an immediate impact in their careers. All courses in the Foundations of Business Management Graduate Certificate carry the established online MBA program fee in place of traditional graduate tuition and fees. This program fee aligns with the previously approved online MBA and institutional online program fee structure, with no new fee structure requested.

Theodore Unzicker (tunzicker) (Fri, 10 Jan 2025 18:36:58 GMT): Added "Academic" to title for standardization purposes.

Sydney Beal-Coles (sbeal) (Tue, 28 Jan 2025 18:35:46 GMT): Removal of sentence relating to the certificate's fee structure per UCC 1/27/25 meeting

Key: 558

240: GEOLOGY (MS)

In Workflow

- 1. 224 Chair (alistair@uidaho.edu)
- 2. 225 Chair (alistair@uidaho.edu)
- 3. 19 Curriculum Committee Chair (gharley@uidaho.edu)
- 4. 19 Dean (gingercarney@uidaho.edu)
- 5. Provost's Office (kudas@uidaho.edu; stoutm@uidaho.edu; jvalkovic@uidaho.edu; gwen@uidaho.edu; cari@uidaho.edu; brendah@uidaho.edu; sandeschlueter@uidaho.edu)
- 6. Degree Audit Review (rfrost@uidaho.edu; sandeschlueter@uidaho.edu)
- 7. Graduate Council Chair (mcmurtry@uidaho.edu; slthomas@uidaho.edu; sandeschlueter@uidaho.edu)
- 8. Registrar's Office (none)
- 9. Ready for UCC (none)
- 10. UCC (none)
- 11. Faculty Senate Chair (stoutm@uidaho.edu; cari@uidaho.edu; nvietz@uidaho.edu; sandeschlueter@uidaho.edu)
- 12. Provost Q 2 (stoutm@uidaho.edu; gwen@uidaho.edu; sandeschlueter@uidaho.edu)
- 13. State Approval (stoutm@uidaho.edu; gwen@uidaho.edu; sandeschlueter@uidaho.edu)
- 14. NWCCU (stoutm@uidaho.edu; sandeschlueter@uidaho.edu; gwen@uidaho.edu)
- 15. Catalog Update (sbeal@uidaho.edu)

Approval Path

- 1. Fri, 22 Sep 2023 22:59:05 GMT
- Alistair Smith (alistair): Approved for 224 Chair 2. Fri, 22 Sep 2023 23:48:19 GMT Alistair Smith (alistair): Approved for 225 Chair
- Mon, 09 Oct 2023 22:11:30 GMT Mark Nielsen (markn): Approved for 19 Curriculum Committee Chair
- 4. Tue, 10 Oct 2023 23:57:29 GMT Ginger Carney (gingercarney): Approved for 19 Dean
- 5. Wed, 08 Nov 2023 19:51:40 GMT Linda Lundgren (lindalundgren): Rollback to 19 Curriculum Committee Chair for Provost's Office
- Wed, 08 Nov 2023 20:07:24 GMT Sydney Beal-Coles (sbeal): Rollback to 224 Chair for 19 Curriculum Committee Chair
- Wed, 08 Nov 2023 20:22:45 GMT Alistair Smith (alistair): Rollback to Initiator
- Wed, 03 Apr 2024 22:10:00 GMT Alistair Smith (alistair): Approved for 224 Chair
- Fri, 03 May 2024 15:12:19 GMT Alistair Smith (alistair): Approved for 225 Chair
- 10. Tue, 17 Sep 2024 17:50:42 GMT Grant Harley (gharley): Approved for 19 Curriculum Committee Chair
- 11. Tue, 17 Sep 2024 18:12:54 GMT Ginger Carney (gingercarney): Approved for 19 Dean
- 12. Thu, 24 Oct 2024 18:51:38 GMT Sande Schlueter (sandeschlueter): Approved for Provost's Office
- 13. Thu, 31 Oct 2024 16:34:17 GMT Rebecca Frost (rfrost): Approved for Degree Audit Review
- Fri, 06 Dec 2024 22:10:52 GMT Stephanie Thomas (slthomas): Approved for Graduate Council Chair
- 15. Fri, 10 Jan 2025 18:33:26 GMT Theodore Unzicker (tunzicker): Approved for Registrar's Office
- 16. Fri, 10 Jan 2025 22:32:24 GMT Sydney Beal-Coles (sbeal): Approved for Ready for UCC
- 17. Tue, 28 Jan 2025 18:25:17 GMT Sydney Beal-Coles (sbeal): Approved for UCC

Date Submitted: Wed, 03 Apr 2024 20:22:51 GMT

Viewing: 240 : Geology (MS) Last edit: Tue, 28 Jan 2025 18:24:37 GMT

Changes proposed by: Renee Love

Faculty Contact

Faculty Name

Renee Love

Faculty Email

rlove@uidaho.edu

Change Type (Choose all that apply)

Create an option, emphasis, concentration, specialization

Description of Change

This program is designed for individuals who wish to place less emphasis upon research in their plan of study but want to gain experience in applying their knowledge to a substantial project of an applied nature. Students must take 3 credits of GEOL 599 and projects will be developed in consultation with major professor and may be related to experience and/or internship work. Students must complete 1 credit of GEOL 501. This nonthesis option can be completed via face-to-face or by online delivery.

Will this request have a fiscal impact of \$250K or greater?

No

Academic Level

Graduate

College

Science

Department/Unit: Earth & Spatial Sciences

Effective Catalog Year 2024-2025

Program Title Geology (MS)

Program Credits

30

CIP Code 40.0601 - Geology/Earth Science, General.

Curriculum:

Master of Science. Major in Geology.

Thesis Option

General M.S. requirements apply. Prerequisites are the equivalent of an undergraduate major in the area of specialization. A written thesis is required for which ten credits (of the minimum of 30 credits for the degree) are permitted. This thesis option can be completed via face-to-face or by online delivery.

Master of Science. Major in Geology.

Non-thesis Option

This program is designed for individuals who wish to place less emphasis upon research in their plan of study but want to gain experience in applying their knowledge to a substantial project of an applied nature. Students must take 3 credits of GEOL 5990, and projects will be developed in consultation with major professor and may be related to experience and/or internship work. Students must complete 1 credit of GEOL 5010. This non-thesis option can be completed via face-to-face or by online delivery.

Distance Education Availability

To comply with the requirements of the Idaho State Board of Education (SBOE) and the Northwest Commission on Colleges and Universities (NWCCU) the University of Idaho must declare whether 50% or more of the curricular requirements of a program which may be completed via distance education.

Can 50% or more of the curricular requirements of this program be completed via distance education? Yes

If Yes, can 100% of the curricular requirements of this program be completed via distance education? Yes

Geographical Area Availability

In which of the following geographical areas can this program be completed in person? Moscow

Student Learning Outcomes

Have learning outcomes changed?

Yes

Learning Objectives

- 1. Graduates will demonstrate in-depth content knowledge in the professional sub-field of their choice and related, supporting sub-fields in geology, mathematics, and other sciences.
- 2. For the thesis option, students will carry out and complete an original thesis project. It is expected that they will contribute to the design and planning of this project, gather data, and interpret results. They will be proficient in discipline-specific skills that are specific to their thesis research projects and to their intended field of employment. For the non-thesis option, students will carry out and complete a literature review report or report that is associated with an internship or other related activity. It is expected that they will present their learnings in the department in the form of a portfolio, report, or presentation.
- 3. Graduates will be able to communicate their results in the form of written reports and oral and multimedia presentations.

A clearly stated rationale for this proposal must be included or the University Curriculum Committee will return the proposal for completion of this section. The rational should provide a detailed summary of the proposed change(s). In addition, include a statement in the rationale regarding how the department will manage the added workload, if any.

Our MS in Geology does not have a non-thesis option and we need that option in order to offer a 4+1 degree. We would also like to offer a non-thesis to make it consistent with our other MS programs in our department. The non-thesis option can be completed online or in person, while the thesis version can only be completed in person. This non-thesis option can be done remotely (online).

Reviewer Comments

Linda Lundgren (lindalundgren) (Wed, 08 Nov 2023 19:51:40 GMT): Rollback: Email sent to Rebecca Love re: request for correction to learning outcomes and to clarify whether CDA is a geographical area for delivery, as Moscow is the only location on the proposal.

Sydney Beal-Coles (sbeal) (Wed, 08 Nov 2023 20:07:24 GMT): Rollback: Rolled back per the request of Linda Lundgren

Alistair Smith (alistair) (Wed, 08 Nov 2023 20:22:46 GMT): Rollback: As per the provosts office, the student learning objectives do not any information on the option of a non-thesis option. They also raised questions on whether this degree is possible at only just Moscow or more widely given the non-thesis description includes the ability to take the degree online.

Sydney Beal-Coles (sbeal) (Tue, 28 Jan 2025 18:24:37 GMT): Description edit regarding location per UCC 1/27/25 meeting

Key: 240